Sentiment analysis of Algerian Arabic dialect on social media Using Bi-LSTM recurrent neural networks
DOI:
https://doi.org/10.18540/jcecvl10iss7pp20058Palabras clave:
Sentiment analysis, Artificial intelligence, Social Web evolution, Deep learning solutions, Bi-LSTMResumen
This paper presents a sentiment analysis approach using Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Networks to train predictive models for sentiment analysis on social media, particularly focusing on Algerian Arabic Dialect. The method leverages word-to-vector embedding for word representation and incorporates natural language understanding of emojis to improve semantic interpretation. The model achieves a high accuracy of 94%, demonstrating its effectiveness in analyzing sentiments in online discussions. The originality lies in applying Bi-LSTM to handle multilingual challenges on social platforms. The findings have practical implications for business, policymaking, and public sentiment evaluation, while also contributing positively to fostering informed online discourse.
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 The Journal of Engineering and Exact Sciences
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.