Liquid-vapor phase diagram of carbon dioxide near the critical point

Auteurs

  • Azzedine Abbaci Laboratoire de Synthèse et de Biocatalyse Organique, Faculté des Sciences, Départementde Chimie, Université Badji-Mokhtar, B.P. 12, Sidi-Amar, Annaba (23200), Algeria https://orcid.org/0000-0002-4112-9287

DOI :

https://doi.org/10.18540/jcecvl10iss9pp20832

Mots-clés :

Carbon dioxide, crossover model, equation of state, supercritical fluids

Résumé

Reliable information on the properties of supercritical fluids is sought due to their importance in chemical technology. For this purpose, we consider the crossover model to explain the behavior of the thermodynamic properties of fluids in the vicinity of the critical point. In particular, we present an up-to-date examination of the coexistence densities of carbon dioxide near the critical point and compare it the experimental data of Duschek et al. as well as with the data generated from NIST REFPROP package.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Abbaci, A., (2005). Thermodynamic properties of ethane in the critical region. J. Mol. Liq., 118, 31-36. https://doi.org/10.1016/j.molliq.2004.07.006

Abbaci A. and Berrezeg. A. (2004). A Thermodynamic Equation of State for the Critical Region of Ethylene. Int. J. of Thermophys., 25, 739–752. https://doi.org/10.1023/B:IJOT.0000034235.06616.97

Abbaci, A., Berrezeg, A. and Samar, M. E. H. (2003/2007). Prediction of the coexisting liquid and vapour densities of ethylene near the critical point, High temperatures-High Pressures, 35/36, , 691-697.

Abbaci, A. (2004). The coexistence curve diameter of Sulfur Hexafluoride in the critical point, Iran. J. Chem. & Chem. Eng., 23 (1), 103-108, 10.30492/ijcce.2004.8167.

Akgerman, A. and Madras, G. (1994). Supercritical fluids-Fundamentals for application. Nato ASI Ser. E 273, Kluwer, Dordrecht, 669-695.

Beckman, E. J. (1996). Carbon dioxide extraction of biomolecules. SCIENCE, 271(5249), 613-614. American Association for the Advancement of Science (AAAS). https://doi: 10.1126/science.271.5249.613.

Burton M., and Balzarini, D. A. (1974). Lorentz–Lorenz Coefficient of Ethane. Can. J. Phys., 52, 2011-2013. https://doi.org/10.1139/p74-266

Cansell, F., Botella, Ph., Garrabos, Y., Six, J.L., Gnanou Y., and Tufeu, R. (1997). Thermodynamic aspects of supercritical fluids processing: applications to polymers and wastes treatment. Polymers J., 29, 910-916. https://ogst.ifpenergiesnouvelles.fr/articles/ogst/pdf/1998/01/cansell_v53n1.pdf

Cansell, F., Chevalier, B., Demourgues, A., Etourneau, J., Even, C., Pessey, V., Petit, S., Tressaud, A. and Weill, F. (1999). Supercritical fluid processing: a new route for materials synthesis. J. Mater. Chem., 9, 67-75. https://DOI: 10.1039/A804964E.

Chen, D. T., Craig, A. P., Reichert E. and Hoven, J. (1995). Depolymerization of tire and natural rubber using supercritical fluids. J. Hazar. Mat., 44, 53-60. https://DOI:10.1016/0304-3894(95)00047-X

Chen, Z. Y., Abbaci, A., Tang, S. and Sengers, J. V. (1990). Global thermodynamic behavior of fluids in the critical region. Phys. Rev. A, 42, 4470-4484. https://doi.org/10.1103/PhysRevA.42.4470

Duschek, W., Kleinrahm, R., Wagner, W. (1990). Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide II. Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexistence curve. J. Chem. Thermodyn., 22, 841-864. doi:10.1016/0021-9614(90)90173-N

Hutchenson, K.W. and Foster N.R. (1995). Innovations in supercritical fluids science and technology. ACS Symposium, Serie 608, Washington. https://DOI: 10.1021/bk-1995-0608.ch001

Kiran E. (1994). Supercritical fluids-Fundamentals for application. Nato ASI Ser. E 273, Kluwer, Dordrecht, 541-588.

Ley-Koo M. and Green M.S. (1977). Revised and extended scaling for coexisting densities of SF6. Phys. Rev. A, 16, 2483- 2487. DOI:https://doi.org/10.1103/PhysRevA.16.2483

Michels, A. and Michels, C. (1935). Isotherms of CO2 between 0° and 150° and pressures from 16 to 250 atm (Amagat densities 18-206), Proc. R. Soc A, London Ser., 53, 201-214.

Michels, A. and Michels, C., and Wooters, H. (1935). Isotherms of CO2 between 70 and 3000 atmospheres (Amagat densities between 200 and 600), Proc. R. Soc. A, London Ser., 153, 214-224.

Michels, A. and Blaisse, B. (1937). The isotherms of CO2 in the neighbourhood of the critical point and round the coexistence line, Proc. R. Soc. A, London Ser., 160, 358-375. https://doi.org/10.1098/rspa.1937.0114

Nicoll, J. F., and Albright, P.C. (1985). Crossover functions by renormalization-group matching: Three-loop results. Phys. Rev. B, 31, 4576-4589. Doi:10.1103/PhysRevB.31.4576.

Nicoll, J. F. (1983). Nonlinear Solutions of Renormalization-Group Equations. Phys. Rev. A, 24, 2203-2220. https://Doi:10.1103/PhysRevLett.33.1524.3

Nicoll, J. F., and Bhattacharjee, J. K. (1983). Crossover functions by renormalization-group matching: ?????(????2) results. Phys. Rev. B., (1981), 23, 389-401. DOI:https://doi.org/10.1103/PhysRevB.23.389

NIST Chemistry WebBook, (2023). NIST Standard Reference Database SRD Number 69. Last update to data, DOI: https://doi.org/10.18434/T4D303.

Page, S.H. , Morrison J.F. and Lee, M.L. (1994). Supercritical fluids-Fundamentals for application. Nato ASI Ser. E 273, Kluwer, Dordrecht, 641-652.

Pestak, M. W., Goldstein, R. E., M. H. W. Chan, J. R.,De Bruyn, Balzarini D. A. & Ashcroft N. W. (1987). Three-body interactions, scaling variables, and singular diameters in the coexistence curves of fluids. Physical Review B, 36(1), 599-614. https://doi.org/10.1103/PhysRevB.36.599

Rizi, A., and Abbaci, A. (2024). An Equation of State for the Thermodynamic Properties of Fluid n-Butane in the Critical Region. Int. J. Thermophys., 45 (5), https://DoI:10.1007/s10765-024-03354-y

Rizi, A. and Abbaci, (2012), A. A thermodynamic equation of state for the critical region of argon. J. Mol. Liq., 171, 64-70. https://doi.org/10.1016/j.molliq.2012.04.010

Schneider, G.M. (1983). Physicochemical aspects of fluid extraction, Fluid Phase Equilib. 10, 141-157.

Weiner J., Langley K. H., and Ford N. C., Jr. (1974). Experimental evidence for a departure from the law of the rectilinear diameter. Phys. Rev. Lett., 32, 879- 881. https://doi.org/10.1103/PhysRevLett.32.879

Téléchargements

Publiée

2024-12-16

Comment citer

Abbaci, A. (2024). Liquid-vapor phase diagram of carbon dioxide near the critical point. The Journal of Engineering and Exact Sciences, 10(9), 20832. https://doi.org/10.18540/jcecvl10iss9pp20832

Numéro

Rubrique

General Articles