APPLICATION OF PRIGOGINE-FLORY-PATTERSON THEORY TO EXCESS MOLAR VOLUMES OF BINARY LIQUID MIXTURES OF {METHYL TERT BUTYL ETHER (MTBE) + ALCOHOLS} AT DIFFERENT TEMPERATURES AND ATMOSPHERIC PRESSURE

Auteurs

  • Heloisa Emi Hoga FEI UNIVERSITY
  • Ricardo Belchior Torres FEI UNIVERSITY

DOI :

https://doi.org/10.18540/jcecvl4iss1pp0085-0091

Mots-clés :

Methyl tert butyl ether, Alcohols, Excess molar volume, Prigogine-Flory-Patterson theory

Résumé

In the present study, experimental data of excess molar volumes ( ) of binary liquid mixtures of methyl tert butyl ether (MTBE) + methanol, or + ethanol, or + 1-propanol, or + 2-propanol, or + 1-butanol, or + 1-pentanol, or + 1-hexanol have been used to test the applicability of the Prigogine-Flory-Patterson theory (PFP) as a function of composition at different temperatures and atmospheric pressure. According to the model, interactional contribution is the most important one to explain the behavior. It may be observed that the PFP theory reproduces the main features of the experimental data by using only one fitted parameter adjusted. Good agreements between the experimental results and the theory were obtained for all the systems studied.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

BARBE, M.; PATTERSON, D. Thermodynamics of mixtures of hexane and heptane isomers with normal and branched hexadecane. J. Solution Chem. 9, 753-769, 1980.
VAN, H.T.; PATTERSON, D. Volume of mixing and the P* effect: Pt. I. Hexane isomers with normal and branched hexadecane. J. Solution Chem. 11, 793-805, 1982.
PRIGOGINE, I. The Molecular Theory of Solution. North Holland, Amsterdam, 1957.
FLORY, P. J.; ORWOLL, R. A.; VRIJ, A. Statistical Thermodynamics of Chain Molecule Liquids. I. An Equation of State for Normal Paraffin Hydrocarbons. Journal of the American Chemical Society 86(17), 3507-3514, 1964.
FLORY, P. J.; ORWOLL, R. A.; VRIJ, A. Statistical Thermodynamics of Chain Molecule Liquids. II. Liquid Mixtures of Normal Paraffin Hydrocarbons. Journal of the American Chemical Society 86(17), 3515-3520, 1964.
HOGA, H. E.; TORRES, R. B. Volumetric and viscometric properties of binary mixtures of {methyl tert-butyl ether (MTBE) + alcohol} at several temperatures and p = 0.1 MPa: Experimental results and application of the ERAS model. Journal of Chemical Thermodynamics, 43(8), 1104-1134, 2011.
BONDI, A. Van der Waals Volumes and Radii. The Journal of Physical Chemistry 68(3), 441-451, 1964.
BICH, E.; PAPAIOANNOU, D.; HEITZA, A.; TUSEL-LANGER, E.; LICHTENTHALER, R. N. Excess enthalpy of the system propan-1-ol+MTBE+i-octane. Experimental results and ERAS model calculations. Fluid Phase Equilibria 156(1-2), 115-135, 1999.
DOMANSKA, U. The excess molar volumes of (hydrocarbon + branched chain ether) systems at 298.15 K and 308.15 K, and the application of PFP theory. Fluid Phase Equilibria 130(1-2), 207-222, 1997.
TORRES, R. B.; FRANCESCONI, A. Z. VOLPE, P. L. O. Experimental study and modelling using the ERAS-Model of the excess molar volume of acetonitrile–alkanol mixtures at different temperatures and atmospheric pressure. Fluid Phase Equilibria 210(2), 287-306, 2003.
FUNKE, H.; WETZEL, W.; HEINTZ, A. New applications of the ERAS model. Thermodynamics of amine + alkane and alcohol + amine mixtures. Pure Applied Chemistry 61(8), 1429-1439, 1989.
JAIN, D. M.; SHAH, V.; RABADIYA, S.; OSWAL, S. Viscosity and excess molar volume of binary mixtures of methanol with n-butylamine and di-n-butylamine at 303.15, 313.15 and 323.15 K. Characterization in terms of ERAS model. Journal of Molecular Liquids 144(1-2), 65-70, 2009.
REZANOVA, E. N.; KAMMERER, K.; LICHTENTHALER, R. N. Excess molar volumes and enthalpies of { an alkanol + tert -amyl methyl ether ( TAME )}. Journal of Chemical Thermodynamics 32(11), 1569-1579, 2000.
GARCIA-MIAJA, G.; TRONCOSO, J.; ROMANÍ, L. Excess properties for binary systems ionic liquid + ethanol: Experimental results and theoretical description using the ERAS model. Fluid Phase Equilibria 274(1-2), 59-67, 2008.
HEINTZ, A. A New Theoretical Approach for Predicting Excess Properties of Alkanol/Alkane Mixtures. Berichte der Bunsengesellschaft für Physikalische Chemie 89(2), 172-181, 1985.
BENDER, M.; HEINTZ, A. Thermodynamics of 1-alkanol + n-alkane mixtures based on predictions of the eras model. Heintz, Fluid Phase Equilibria 89(1), 197-215, 1993.
MOHREN, S.; HEINTZ, A. Excess properties of propan-1-ol + polyether and propan-1-ol + polyamine mixtures. Experimental results of HE and VE and application of a multiple cross-association theory based on the ERAS model. Fluid Phase Equilibria 133(1-2), 247-264, 1997.
OSWAL, S. L.; PRAJAPATI, K. D.; GHAEL, N. Y.; IJARDAR, S. P. Speeds of sound, isentropic compressibilities and excess molar volumes of an alkanol + cycloalkane at 303.15 K: II. Results for alkan-2-ols + cyclohexane and alkan-1-ols + methylcyclohexane and theoretical interpretation. Fluid Phase Equilibria 218(1), 131-140, 2004.
GALVÃO, A. C.; FRANCESCONI, A. Z. ERAS modeling of the excess molar enthalpies of binary liquid mixtures of 1-pentanol and 1-hexanol with acetonitrile at atmospheric pressure and 288, 298, 313 and 323 K. Thermochimica Acta 450(1-2), 81-86, 2006.
HOLMAN, T.; CASANOVA, C. Application of the extended real associated solution model to predict thermodynamic properties of n-alcohol + linear monoether mixtures. Fluid Phase Equilibria 133(1-2), 193-211, 1997.
OSWAL, S. L. Studies of viscosity and excess molar volume of binary mixtures: 5. Characterization of excess molar volume of 1-alkanol with alkylamines, dialkylamines and trialkylamines in terms of the ERAS model. Thermochimica Acta 425(1-2), 59-68, 2005.

Téléchargements

Publiée

2018-03-02

Comment citer

Hoga, H. E., & Torres, R. B. (2018). APPLICATION OF PRIGOGINE-FLORY-PATTERSON THEORY TO EXCESS MOLAR VOLUMES OF BINARY LIQUID MIXTURES OF {METHYL TERT BUTYL ETHER (MTBE) + ALCOHOLS} AT DIFFERENT TEMPERATURES AND ATMOSPHERIC PRESSURE. The Journal of Engineering and Exact Sciences, 4(1), 0085–0091. https://doi.org/10.18540/jcecvl4iss1pp0085-0091

Numéro

Rubrique

Chemical Engineering