Métodos Eletroanalíticos como Ferramenta para Determinar a Capacidade Antioxidante em Amostras de Sangue

Autores

DOI:

https://doi.org/10.18540/jcecvl10iss8pp20793

Palavras-chave:

Estresse oxidativo; Espécies reativas de oxigênio; Bioeletroquímica.

Resumo

O metabolismo aeróbico é um processo essencial para a produção de energia nas células, mas também gera espécies reativas de oxigênio (EROs), que, em excesso, podem causar danos celulares e contribuir para o desenvolvimento de diversas doenças, como doenças cardiovasculares, câncer e distúrbios neurodegenerativos. O equilíbrio entre ROS e antioxidantes é crucial para a saúde, sendo que um desequilíbrio pode levar ao estresse oxidativo, um fator de risco significativo para várias condições clínicas. As técnicas eletroanalíticas, como voltametria cíclica (VC), voltametria de onda quadrada (VOQ) e voltametria de pulso diferencial (VPD), têm se mostrado ferramentas poderosas para avaliar a capacidade antioxidante de maneira mais eficiente e precisa do que os métodos tradicionais espectrofotométricos. Essas técnicas oferecem vantagens notáveis, como alta sensibilidade, simplicidade e a capacidade de analisar amostras biológicas complexas de forma rápida. A VC permite a análise de compostos com boa sensibilidade, a VPD destaca-se pela sua alta precisão, enquanto a VOQ oferece excelente resolução e rapidez, sendo ideal para aplicações clínicas. O uso dessas metodologias tem sido ampliado na análise de antioxidantes em diversas matrizes biológicas, o que possibilita uma avaliação mais precisa do estresse oxidativo e do estado antioxidante em contextos clínicos específicos. Além disso, os biossensores eletroquímicos têm se tornado ferramentas revolucionárias no diagnóstico clínico, permitindo o monitoramento em tempo real de doenças relacionadas ao estresse oxidativo. Inovações como dispositivos portáteis e integração com inteligência artificial prometem aprimorar ainda mais a acessibilidade e a personalização dos tratamentos, apesar dos desafios que envolvem o custo e a padronização dos dispositivos.

Downloads

Referências

Alcalde, B., Granados, M., & Saurina, J. (2019). Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods. Antioxidants, 8(11), 523. https://doi.org/10.3390/antiox8110523

Allegra, M. (2021). Redox Systems, Oxidative Stress, and Antioxidant Defences in Health and Disease. Antioxidants, 10(12), 1955. https://doi.org/10.3390/antiox10121955

Arteaga, J. F., Ruiz-Montoya, M., Palma, A., Alonso-Garrido, G., Pintado, S., & Rodríguez-Mellado, J. M. (2012). Comparison of the Simple Cyclic Voltammetry (CV) and DPPH Assays for the Determination of Antioxidant Capacity of Active Principles. Molecules, 17(5), 5126–5138. https://doi.org/10.3390/molecules17055126

Beer, D. D., Harbertson, J. F., Kilmartin, P. A., Roginsky, V., Barsukova, T., Adams, D. O., Waterhouse, A. L. (2004). Phenolics: A Comparison of Diverse Analytical Methods. American Journal of Enology and Viticulture, 55(4). https://doi.org/10.5344/ajev.2004.55.4.389

Blasco, A., González Crevillén, A., González, M., & Escarpa, A. (2007). Direct Electrochemical Sensing and Detection of Natural Antioxidants and Antioxidant Capacity in Vitro Systems. Electroanalysis, 19(22), 2275–2286. https://doi.org/10.1002/elan.200704004

Cahová-Kucha?íková, K., Fojta, M., Mozga, A. A., & Pale?ek, E. (2005). Use of DNA Repair Enzymes in Electrochemical Detection of Damage to DNA Bases in Vitro and in Cells. Analytical Chemistry, 77(9), 2920–2927. https://doi.org/10.1021/ac048423x

Chevion, S., Roberts, M. A., & Chevion, M. (2000). The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radical Biology and Medicine, 28(6), 860–870. https://doi.org/10.1016/s0891-5849(00)00178-7

Dorozhko, E. V., & Korotkova, E. I. (2011). Biologically active substances studied by voltammetric and spectrophotometric techniques. Pharmaceutical Chemistry Journal, 44(10), 581–584. https://doi.org/10.1007/s11094-011-0521-2

Ferreira, M., Varela, H., Torresi, R. M., & Tremiliosi-Filho, G. (2006). Electrode passivation caused by polymerization of different phenolic compounds. Electrochimica Acta, 52(2), 434–442. https://doi.org/10.1016/j.electacta.2006.05.025

Fischer, M. A. J. G., Gransier, T. J. M., Beckers, L. M. G., Bekers, O., Bast, A., & Haenen, G. R. M. M. (2005). Determination of the antioxidant capacity in blood. Clinical Chemistry and Laboratory Medicine, 43(7), 735–740. https://doi.org/10.1515/CCLM.2005.125

G?gotek, A., Jastrz?b, A., Dobrzy?ska, M., Biernacki, M., & Skrzydlewska, E. (2021). Exogenous Antioxidants Impact on UV-Induced Changes in Membrane Phospholipids and the Effectiveness of the Endocannabinoid System in Human Skin Cells. Antioxidants, 10(8), 1260. https://doi.org/10.3390/antiox10081260

Gil, E. S., & Couto, R. O. (2013). Flavonoid electrochemistry: a review on the electroanalytical applications. Revista Brasileira de Farmacognosia, 23(3), 542–558. https://doi.org/10.1590/s0102-695x2013005000031

Hoyos-Arbeláez, J., Vázquez, M., & Contreras-Calderón, J. (2017). Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review. Food Chemistry, 221, 1371–1381. https://doi.org/10.1016/j.foodchem.2016.11.017

Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642

Kilmartin, P. A. (2001). Electrochemical Detection of Natural Antioxidants: Principles and Protocols. Antioxidants & Redox Signaling, 3(6), 941–955. https://doi.org/10.1089/152308601317203495

Koren, E., Lipkin, J., Klar, A., Hershkovitz, E., Ginsburg, I., & Kohen, R. (2009). Total oxidant?scavenging capacities of plasma from glycogen storage disease type Ia patients as measured by cyclic voltammetry, FRAP and luminescence techniques. Journal of Inherited Metabolic Disease, 32(5), 651–659. https://doi.org/10.1007/s10545-009-1242-5

Lima, A. P., Santos, Edson Nossol, Richter, E. M., & Rodrigo A.A. Munoz. (2020). Critical evaluation of voltammetric techniques for antioxidant capacity and activity: Presence of alumina on glassy-carbon electrodes alters the results. Electrochimica Acta, 358, 136925–136925. https://doi.org/10.1016/j.electacta.2020.136925

Makhotkina, O., & Kilmartin, P. A. (2010). The use of cyclic voltammetry for wine analysis: Determination of polyphenols and free sulfur dioxide. Analytica Chimica Acta, 668(2), 155–165. https://doi.org/10.1016/j.aca.2010.03.064

Maksimova, V. (2016). Electrochemical Evaluation of the Synergistic Effect of the Antioxidant Activity of Capsaicin and Other Bioactive Compounds in Capsicum sp. Extracts. International Journal of Electrochemical Science, 6673–6687. https://doi.org/10.20964/2016.08.34

Martinez, S., Valek, L., Rešeti?, J., & Ruži?, D. F. (2006). Cyclic voltammetry study of plasma antioxidant capacity – Comparison with the DPPH and TAS spectrophotometric methods. Journal of Electroanalytical Chemistry, 588(1), 68–73. https://doi.org/10.1016/j.jelechem.2005.12.016

Milardovic, S., Kerekovi?, I., & Rumenjak, V. (2007). A flow injection biamperometric method for determination of total antioxidant capacity of alcoholic beverages using bienzymatically produced ABTS+. Food Chemistry, 105(4), 1688–1694. https://doi.org/10.1016/j.foodchem.2007.04.056

Morris, B. (2003). The components of the Wired Spanning Forest are recurrent. Probability Theory and Related Fields, 125(2), 259–265. https://doi.org/10.1007/s00440-002-0236-0

Nagao, H., Carlos, Coldibeli, B., & Sartori, E. R. (2020). A differential pulse voltammetric method for submicromolar determination of antihistamine drug desloratadine using an unmodified boron-doped diamond electrode. Analytical Methods, 12(8), 1115–1121. https://doi.org/10.1039/c9ay02785h

Newair, E. F., Al-Anazi, A., & Garcia, F. (2023). Oxidation of Wine Polyphenols by Electrochemical Means in the Presence of Glutathione. Antioxidants, 12(10), 1891. https://doi.org/10.3390/antiox12101891

Photinon, K., Chalermchart, Y., Khanongnuch, C., Wang, S.-H., & Liu, C.-C. (2010). A Thick-film Sensor as a Novel Device for Determination of Polyphenols and Their Antioxidant Capacity in White Wine. Sensors, 10(3), 1670–1678. https://doi.org/10.3390/s100301670

Pisoschi, A. M., Cimpeanu, C., & Predoi, G. (2015). Electrochemical Methods for Total Antioxidant Capacity and its Main Contributors Determination: A review. Open Chemistry, 13(1). https://doi.org/10.1515/chem-2015-0099

Pohanka, M., Bandouchova, H., Sobotka, J., Sedlackova, J., Soukupova, I., & Pikula, J. (2009). Ferric Reducing Antioxidant Power and Square Wave Voltammetry for Assay of Low Molecular Weight Antioxidants in Blood Plasma: Performance and Comparison of Methods. Sensors, 9(11), 9094–9103. https://doi.org/10.3390/s91109094

René, A., Marie-Laurence Abasq, Didier Hauchard, & Philippe Hapiot. (2010). How Do Phenolic Compounds React toward Superoxide Ion? A Simple Electrochemical Method for Evaluating Antioxidant Capacity. Analytical Chemistry, 82(20), 8703–8710. https://doi.org/10.1021/ac101854w

Sazhina, N. N. (2017). Determination of Antioxidant Activity of Various Bioantioxidants and Their Mixtures by the Amperometric Method. Russian Journal of Bioorganic Chemistry, 43(7), 771–775. https://doi.org/10.1134/s1068162017070147

Simi?, A., Manojlovi?, D., Šegan, D., & Todorovi?, M. (2007). Electrochemical Behavior and Antioxidant and Prooxidant Activity of Natural Phenolics. Molecules, 12(10), 2327–2340. https://doi.org/10.3390/12102327

Suh, H.-J., Kim, S.-R., Hwang, J.-S., Kim, M. J., & Kim, I. (2011). Antioxidant activity of aqueous methanol extracts from the lucanid beetle, Serrognathus platymelus castanicolor Motschulsky (Coleoptera: Lucanidae). Journal of Asia-Pacific Entomology, 14(1), 95–98. https://doi.org/10.1016/j.aspen.2010.10.002

Yakovleva, K.E., Kurzeev, S.A., Stepanova, E.V. et al. (2007). Characterization of plant phenolic compounds by cyclic voltammetry. Applied Biochemistry and Microbiology, 43(6), 661–668. https://doi.org/10.1134/s0003683807060166

Zhang, D., Le, C., Liu, Y., Wang, A., Ji, B., Wu, W., Zhou, F., Wei, Y., Cheng, Q., Cai, S., Xie, L., & Jia, G. (2011). Analysis of the Antioxidant Capacities of Flavonoids under Different Spectrophotometric Assays Using Cyclic Voltammetry and Density Functional Theory. Journal of Agricultural and Food Chemistry, 59(18), 10277–10285. https://doi.org/10.1021/jf201773q

Downloads

Publicado

2024-12-12

Como Citar

Oliveira, F. G. de, Alvares, T. da S., & Melo, R. de S. (2024). Métodos Eletroanalíticos como Ferramenta para Determinar a Capacidade Antioxidante em Amostras de Sangue. The Journal of Engineering and Exact Sciences, 10(8), 20793. https://doi.org/10.18540/jcecvl10iss8pp20793

Edição

Seção

General Articles
Crossref
0
Scopus
0