Electroanalytical Methods as a Tool for Determining the Antioxidant Capacity in Blood Samples
DOI:
https://doi.org/10.18540/jcecvl10iss8pp20793Palabras clave:
Oxidative stress, Reactive oxygen species, BioelectrochemistryResumen
Aerobic metabolism is an essential process for energy production in cells, but it also generates reactive oxygen species (ROS), which, in excess, can cause cellular damage and contribute to the development of various diseases, such as cardiovascular diseases, cancer, and neurodegenerative disorders. The balance between ROS and antioxidants is crucial for health, as an imbalance can lead to oxidative stress, a significant risk factor for several clinical conditions. Electroanalytical techniques, such as cyclic voltammetry (CV), square wave voltammetry (SWV), and differential pulse voltammetry (DPV), have proven to be powerful tools for evaluating antioxidant capacity more efficiently and accurately than traditional spectrophotometric methods. These techniques offer notable advantages, such as high sensitivity, simplicity, and the ability to analyze complex biological samples rapidly. CV allows for the analysis of compounds with good sensitivity, DPV stands out for its high precision, while SWV offers excellent resolution and speed, making it ideal for clinical applications. The use of these methodologies has been expanded to analyze antioxidants in various biological matrices, enabling a more accurate assessment of oxidative stress and antioxidant status in specific clinical contexts. Additionally, electrochemical biosensors have become revolutionary tools in clinical diagnostics, allowing real-time monitoring of diseases related to oxidative stress. Innovations such as portable devices and integration with artificial intelligence promise to further enhance accessibility and treatment personalization, despite the challenges involved in device cost and standardization.
Descargas
Citas
Alcalde, B., Granados, M., & Saurina, J. (2019). Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods. Antioxidants, 8(11), 523. https://doi.org/10.3390/antiox8110523
Allegra, M. (2021). Redox Systems, Oxidative Stress, and Antioxidant Defences in Health and Disease. Antioxidants, 10(12), 1955. https://doi.org/10.3390/antiox10121955
Arteaga, J. F., Ruiz-Montoya, M., Palma, A., Alonso-Garrido, G., Pintado, S., & Rodríguez-Mellado, J. M. (2012). Comparison of the Simple Cyclic Voltammetry (CV) and DPPH Assays for the Determination of Antioxidant Capacity of Active Principles. Molecules, 17(5), 5126–5138. https://doi.org/10.3390/molecules17055126
Beer, D. D., Harbertson, J. F., Kilmartin, P. A., Roginsky, V., Barsukova, T., Adams, D. O., Waterhouse, A. L. (2004). Phenolics: A Comparison of Diverse Analytical Methods. American Journal of Enology and Viticulture, 55(4). https://doi.org/10.5344/ajev.2004.55.4.389
Blasco, A., González Crevillén, A., González, M., & Escarpa, A. (2007). Direct Electrochemical Sensing and Detection of Natural Antioxidants and Antioxidant Capacity in Vitro Systems. Electroanalysis, 19(22), 2275–2286. https://doi.org/10.1002/elan.200704004
Cahová-Kucha?íková, K., Fojta, M., Mozga, A. A., & Pale?ek, E. (2005). Use of DNA Repair Enzymes in Electrochemical Detection of Damage to DNA Bases in Vitro and in Cells. Analytical Chemistry, 77(9), 2920–2927. https://doi.org/10.1021/ac048423x
Chevion, S., Roberts, M. A., & Chevion, M. (2000). The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radical Biology and Medicine, 28(6), 860–870. https://doi.org/10.1016/s0891-5849(00)00178-7
Dorozhko, E. V., & Korotkova, E. I. (2011). Biologically active substances studied by voltammetric and spectrophotometric techniques. Pharmaceutical Chemistry Journal, 44(10), 581–584. https://doi.org/10.1007/s11094-011-0521-2
Ferreira, M., Varela, H., Torresi, R. M., & Tremiliosi-Filho, G. (2006). Electrode passivation caused by polymerization of different phenolic compounds. Electrochimica Acta, 52(2), 434–442. https://doi.org/10.1016/j.electacta.2006.05.025
Fischer, M. A. J. G., Gransier, T. J. M., Beckers, L. M. G., Bekers, O., Bast, A., & Haenen, G. R. M. M. (2005). Determination of the antioxidant capacity in blood. Clinical Chemistry and Laboratory Medicine, 43(7), 735–740. https://doi.org/10.1515/CCLM.2005.125
G?gotek, A., Jastrz?b, A., Dobrzy?ska, M., Biernacki, M., & Skrzydlewska, E. (2021). Exogenous Antioxidants Impact on UV-Induced Changes in Membrane Phospholipids and the Effectiveness of the Endocannabinoid System in Human Skin Cells. Antioxidants, 10(8), 1260. https://doi.org/10.3390/antiox10081260
Gil, E. S., & Couto, R. O. (2013). Flavonoid electrochemistry: a review on the electroanalytical applications. Revista Brasileira de Farmacognosia, 23(3), 542–558. https://doi.org/10.1590/s0102-695x2013005000031
Hoyos-Arbeláez, J., Vázquez, M., & Contreras-Calderón, J. (2017). Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review. Food Chemistry, 221, 1371–1381. https://doi.org/10.1016/j.foodchem.2016.11.017
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642
Kilmartin, P. A. (2001). Electrochemical Detection of Natural Antioxidants: Principles and Protocols. Antioxidants & Redox Signaling, 3(6), 941–955. https://doi.org/10.1089/152308601317203495
Koren, E., Lipkin, J., Klar, A., Hershkovitz, E., Ginsburg, I., & Kohen, R. (2009). Total oxidant?scavenging capacities of plasma from glycogen storage disease type Ia patients as measured by cyclic voltammetry, FRAP and luminescence techniques. Journal of Inherited Metabolic Disease, 32(5), 651–659. https://doi.org/10.1007/s10545-009-1242-5
Lima, A. P., Santos, Edson Nossol, Richter, E. M., & Rodrigo A.A. Munoz. (2020). Critical evaluation of voltammetric techniques for antioxidant capacity and activity: Presence of alumina on glassy-carbon electrodes alters the results. Electrochimica Acta, 358, 136925–136925. https://doi.org/10.1016/j.electacta.2020.136925
Makhotkina, O., & Kilmartin, P. A. (2010). The use of cyclic voltammetry for wine analysis: Determination of polyphenols and free sulfur dioxide. Analytica Chimica Acta, 668(2), 155–165. https://doi.org/10.1016/j.aca.2010.03.064
Maksimova, V. (2016). Electrochemical Evaluation of the Synergistic Effect of the Antioxidant Activity of Capsaicin and Other Bioactive Compounds in Capsicum sp. Extracts. International Journal of Electrochemical Science, 6673–6687. https://doi.org/10.20964/2016.08.34
Martinez, S., Valek, L., Rešeti?, J., & Ruži?, D. F. (2006). Cyclic voltammetry study of plasma antioxidant capacity – Comparison with the DPPH and TAS spectrophotometric methods. Journal of Electroanalytical Chemistry, 588(1), 68–73. https://doi.org/10.1016/j.jelechem.2005.12.016
Milardovic, S., Kerekovi?, I., & Rumenjak, V. (2007). A flow injection biamperometric method for determination of total antioxidant capacity of alcoholic beverages using bienzymatically produced ABTS+. Food Chemistry, 105(4), 1688–1694. https://doi.org/10.1016/j.foodchem.2007.04.056
Morris, B. (2003). The components of the Wired Spanning Forest are recurrent. Probability Theory and Related Fields, 125(2), 259–265. https://doi.org/10.1007/s00440-002-0236-0
Nagao, H., Carlos, Coldibeli, B., & Sartori, E. R. (2020). A differential pulse voltammetric method for submicromolar determination of antihistamine drug desloratadine using an unmodified boron-doped diamond electrode. Analytical Methods, 12(8), 1115–1121. https://doi.org/10.1039/c9ay02785h
Newair, E. F., Al-Anazi, A., & Garcia, F. (2023). Oxidation of Wine Polyphenols by Electrochemical Means in the Presence of Glutathione. Antioxidants, 12(10), 1891. https://doi.org/10.3390/antiox12101891
Photinon, K., Chalermchart, Y., Khanongnuch, C., Wang, S.-H., & Liu, C.-C. (2010). A Thick-film Sensor as a Novel Device for Determination of Polyphenols and Their Antioxidant Capacity in White Wine. Sensors, 10(3), 1670–1678. https://doi.org/10.3390/s100301670
Pisoschi, A. M., Cimpeanu, C., & Predoi, G. (2015). Electrochemical Methods for Total Antioxidant Capacity and its Main Contributors Determination: A review. Open Chemistry, 13(1). https://doi.org/10.1515/chem-2015-0099
Pohanka, M., Bandouchova, H., Sobotka, J., Sedlackova, J., Soukupova, I., & Pikula, J. (2009). Ferric Reducing Antioxidant Power and Square Wave Voltammetry for Assay of Low Molecular Weight Antioxidants in Blood Plasma: Performance and Comparison of Methods. Sensors, 9(11), 9094–9103. https://doi.org/10.3390/s91109094
René, A., Marie-Laurence Abasq, Didier Hauchard, & Philippe Hapiot. (2010). How Do Phenolic Compounds React toward Superoxide Ion? A Simple Electrochemical Method for Evaluating Antioxidant Capacity. Analytical Chemistry, 82(20), 8703–8710. https://doi.org/10.1021/ac101854w
Sazhina, N. N. (2017). Determination of Antioxidant Activity of Various Bioantioxidants and Their Mixtures by the Amperometric Method. Russian Journal of Bioorganic Chemistry, 43(7), 771–775. https://doi.org/10.1134/s1068162017070147
Simi?, A., Manojlovi?, D., Šegan, D., & Todorovi?, M. (2007). Electrochemical Behavior and Antioxidant and Prooxidant Activity of Natural Phenolics. Molecules, 12(10), 2327–2340. https://doi.org/10.3390/12102327
Suh, H.-J., Kim, S.-R., Hwang, J.-S., Kim, M. J., & Kim, I. (2011). Antioxidant activity of aqueous methanol extracts from the lucanid beetle, Serrognathus platymelus castanicolor Motschulsky (Coleoptera: Lucanidae). Journal of Asia-Pacific Entomology, 14(1), 95–98. https://doi.org/10.1016/j.aspen.2010.10.002
Yakovleva, K.E., Kurzeev, S.A., Stepanova, E.V. et al. (2007). Characterization of plant phenolic compounds by cyclic voltammetry. Applied Biochemistry and Microbiology, 43(6), 661–668. https://doi.org/10.1134/s0003683807060166
Zhang, D., Le, C., Liu, Y., Wang, A., Ji, B., Wu, W., Zhou, F., Wei, Y., Cheng, Q., Cai, S., Xie, L., & Jia, G. (2011). Analysis of the Antioxidant Capacities of Flavonoids under Different Spectrophotometric Assays Using Cyclic Voltammetry and Density Functional Theory. Journal of Agricultural and Food Chemistry, 59(18), 10277–10285. https://doi.org/10.1021/jf201773q
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 The Journal of Engineering and Exact Sciences
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.