Use of aldol condensation between furfural and acetone for biofuel production: A review
DOI:
https://doi.org/10.18540/jcecvl10iss9pp20059Keywords:
Aviation biofuels, Heterogeneous catalysis, Aldol condensationAbstract
The continued reliance on fossil fuels and the associated environmental challenges have spurred the development of renewable energy sources, with biorefineries emerging as a prominent solution for converting biomass into valuable fuels and platform chemicals. Among these, the production of furfural, derived from C5 sugars in lignocellulosic materials, holds particular significance. Extended-chain hydrocarbon fuels and intermediates, such as 4-(2-furyl)-3-buten-2-one (FAc, C8) and 1,4-pentadiene-3-one-1,5-di-2-furanyl (F2Ac, C13), are synthesized via aldol condensation between furfural and acetone, followed by hydrogenation and hydrodeoxygenation processes. This study emphasizes the critical role of catalysts, particularly heterogeneous catalysts, in increasing the efficiency and selectivity of these reactions. Solid catalysts, compared to their homogeneous counterparts, offer substantial advantages, including ease of recovery, reusability, and increased sustainability. Advances in analytical techniques, such as gas chromatography-mass spectrometry (GC-MS) and other state-of-the-art methods, have been instrumental in refining the characterization of heterogeneous catalysts, ensuring improved product quality and process optimization. Additionally, the study explores cutting-edge methodologies for catalyst characterization, utilizing tools such as field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and inductively coupled plasma optical emission spectroscopy (ICP-OES) to obtain precise quantitative and qualitative insights. This review provides a detailed analysis of the integration of these technologies into biofuel production, highlighting the critical role of innovative catalysts—particularly bifunctional systems under controlled conditions—and the development of optimized conversion routes. These strategies are essential for advancing industrial efficiency, improving process selectivity, and contributing to the sustainability of the energy sector.
Downloads
References
Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009–1017. https://doi.org/10.1016/j.envint.2004.04.004
Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493. https://doi.org/10.1039/c004654j
Arhzaf, S., Bennani, M. N., Abouarnadasse, S., Houssaini, J., Ziyat, H., & Qabaqous, O. (2021). Solvent-free aldol condensation of furfural and acetone on calcined Mg-Al hydrotalcites. Moroccan Journal of Chemistry, 9(3), 614-627. https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i3.23587
Arhzaf, S., Houssaini, J., Naciri Bennani, M., Alaqarbeh, M., & Bouachrine, M. (2024). Effect of interlayer anions on the catalytic activity of Mg-Al layered double hydroxides for furfural and acetone aldol condensation reaction. Arabian Journal of Chemistry, 17(1), 105412. https://doi.org/10.1016/j.arabjc.2023.105412
Arumugam, M., Kikhtyanin, O., Osatiashtiani, A., Kyselová, V., Fila, V., Paterova, I., Wong, K.-L., & Kubi?ka, D. (2023). Potassium-modified bifunctional MgAl-SBA-15 for aldol condensation of furfural and acetone. Sustainable Energy & Fuels, 7(13), 3047–3059. https://doi.org/10.1039/D3SE00444A
Barrett, C. J., Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2006). Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Applied Catalysis B: Environmental, 66(1–2), 111–118. https://doi.org/10.1016/j.apcatb.2006.03.001
Bergslien, E. T. (2022). X-ray diffraction (XRD) evaluation of questioned cremains. Forensic Science International, 332, 111171. https://doi.org/10.1016/j.forsciint.2022.111171
Butcher, D. J. (2005). Atomic absorption spectrometry: Interferences and Background Correction. In Encyclopedia of Analytical Science (pp. 157–163). Elsevier. https://doi.org/10.1016/B0-12-369397-7/00025-X
Bhagat, S. K., Nagpure, A. S., Lanjewar, M. R., Gode, N. G., & Thakare, S. R. (2024). Investigation of structural and morphological insights of nanostructured layered double hydroxides: catalytic activity in aldol condensation. Journal of Porous Materials, 31(2), 759–778. https://doi.org/10.1007/s10934-023-01545-w
Chheda, J. N., & Dumesic, J. A. (2007b). An overview of dehydration aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catalysis Today, 123(1–4), 59–70. https://doi.org/10.1016/j.cattod.2006.12.006
Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007b). Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition, 46(38), 7164–7183. https://doi.org/10.1002/anie.200604274
Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303. https://doi.org/10.1038/nature11475
De, S., Saha, B., & Luque, R. (2015). Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresource Technology, 178, 108–118. https://doi.org/10.1016/j.biortech.2014.09.065
de Paz Carmona, H., Kocík, J., Hidalgo Herrador, J. M., & Vráblík, A. (2024). Effectiveness of Mo, NiMo, and CoMo catalysts for co-hydroprocessing furfural-acetone aldol condensation adducts with atmospheric gas oil to produce biofuels. Fuel, 355, 129489. https://doi.org/10.1016/j.fuel.2023.129489
Desai, D. S., & Yadav, G. D. (2019). Green synthesis of furfural acetone by solvent-free aldol condensation of furfural with acetone over La?O?–MgO mixed oxide catalyst. Industrial & Engineering Chemistry Research, 58(35), 16096–16105. https://doi.org/10.1021/acs.iecr.9b01138
Douvris, C., Vaughan, T., Bussan, D., Bartzas, G., & Thomas, R. (2023). How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Science of The Total Environment, 905, 167242. https://doi.org/10.1016/j.scitotenv.2023.167242
Faba, L., Díaz, E., & Ordóñez, S. (2012). Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Applied Catalysis B: Environmental, 113–114, 201–211. https://doi.org/10.1016/j.apcatb.2011.11.039
Fang, X., Wang, Z., Song, W., & Li, S. (2020). Aldol condensation of furfural with acetone over Ca/ZSM-5 catalyst with lower dosages of water and acetone. Journal of the Taiwan Institute of Chemical Engineers, 108, 16–22. https://doi.org/10.1016/j.jtice.2020.01.004
Fang, Z., Zhang, X., Zhuang, X., & Ma, L. (2024). Recent advances in synthesis strategies for biomass-derived high-energy-density jet fuels. Renewable and Sustainable Energy Reviews, 202, 114715. https://doi.org/10.1016/j.rser.2024.114715
Faria, V. W., Almeida, G. C., & Mota, C. J. A. (2018). Aldol condensation of furfural with acetone catalyzed by nitrogenated organic bases: A preliminary study of the catalytic performance toward the production of biojet fuel. Química Nova, 41(6), 601–606. https://doi.org/10.21577/0100-4042.20170225
Ferreira, S. L. C., Bezerra, M. A., Santos, A. S., dos Santos, W. N. L., Novaes, C. G., de Oliveira, O. M. C., Oliveira, M. L., & Garcia, R. L. (2018). Atomic absorption spectrometry – A multi element technique. TrAC Trends in Analytical Chemistry, 100, 1–6. https://doi.org/10.1016/j.trac.2017.12.012
Ghobeira, R., Esbah Tabaei, P. S., Morent, R., & Geyter, N. De. (2022). Chemical characterization of plasma-activated polymeric surfaces via XPS analyses: A review. Surfaces and Interfaces, 31, 102087. https://doi.org/10.1016/j.surfin.2022.102087
Gürbüz, E. I., Gallo, J. M. R., Alonso, D. M., Wettstein, S. G., Lim, W. Y., & Dumesic, J. A. (2013). Conversion of hemicellulose into furfural using solid acid catalysts in ?-valerolactone. Angewandte Chemie International Edition, 52(4), 1270–1274. https://doi.org/10.1002/anie.201207334
Hakeem, I. G., Sharma, A., Sharma, T., Sharma, A., Joshi, J. B., Shah, K., Ball, A. S., & Surapaneni, A. (2023). Techno?economic analysis of biochemical conversion of biomass to biofuels and platform chemicals. Biofuels, Bioproducts and Biorefining, 17(3), 718–750. https://doi.org/10.1002/bbb.2463
He, J., Qiang, Q., Liu, S., Song, K., Zhou, X., Guo, J., Zhang, B., & Li, C. (2021). Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy. Fuel, 306, 121765. https://doi.org/10.1016/j.fuel.2021.121765
Hora, L., Kelbichová, V., Kikhtyanin, O., Bortnovskiy, O., & Kubi?ka, D. (2014). Aldol condensation of furfural and acetone over MgAl layered double hydroxides and mixed oxides. Catalysis Today, 223, 138–147. https://doi.org/10.1016/j.cattod.2013.09.022
Huber, G. W., Chheda, J. N., Barrett, C. J., & Dumesic, J. A. (2005). Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 308(5727), 1446–1450. https://doi.org/10.1126/science.1111166
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry catalysts and engineering. Chemical Reviews, 106(9), 4044–4098. https://doi.org/10.1021/cr068360d
Jafari, S. M., Faridi Esfanjani, A., Katouzian, I., & Assadpour, E. (2017). Release, Characterization, and Safety of Nanoencapsulated Food Ingredients. In Nanoencapsulation of Food Bioactive Ingredients (pp. 401–453). Elsevier. https://doi.org/10.1016/B978-0-12-809740-3.00010-6
Jing, Y., Xin, Y., Guo, Y., Liu, X., & Wang, Y. (2019). Highly efficient Nb?O? catalyst for aldol condensation of biomass-derived carbonyl molecules to fuel precursors. Chinese Journal of Catalysis, 40(8), 1168–1177. https://doi.org/10.1016/S1872-2067(19)63371-1
Kikhtyanin, O., Ganjkhanlou, Y., Kubi?ka, D., Bulánek, R., & ?ejka, J. (2018). Characterization of potassium-modified FAU zeolites and their performance in aldol condensation of furfural and acetone. Applied Catalysis A: General, 549, 8–18. https://doi.org/10.1016/j.apcata.2017.09.017
Kikhtyanin, O., Kelbichová, V., Vitvarová, D., Kub?, M., & Kubi?ka, D. (2014). Aldol condensation of furfural and acetone on zeolites. Catalysis Today, 227, 154–162. https://doi.org/10.1016/j.cattod.2013.10.059
Kong, X., Wei, X., Li, L., Fang, Z., & Lei, H. (2021). Production of liquid fuel intermediates from furfural via aldol condensation over La?O?CO?-ZnO-Al?O? catalyst. Catalysis Communications, 149, 106207. https://doi.org/10.1016/j.catcom.2020.106207
Korolova, V., Kikhtyanin, O., Grechman, E., Russo, V., Wärnå, J., Murzin, D. Yu., & Kubi?ka, D. (2023). Kinetics of furfural aldol condensation with acetone. Catalysis Today, 423, 114272. https://doi.org/10.1016/j.cattod.2023.114272
Korolova, V., Dubnová, L., Veselý, M., Lhotka, M., Kikhtyanin, O., & Kubi?ka, D. (2024). On the influence of synthetic parameters on the properties and aldol condensation performance of the MgAl mixed oxides and rehydrated hydrotalcites. Applied Clay Science, 249, 107263. https://doi.org/10.1016/j.clay.2024.107263
Lange, J., van der Heide, E., van Buijtenen, J., & Price, R. (2012). Furfural—A promising platform for lignocellulosic biofuels. ChemSusChem, 5(1), 150–166. https://doi.org/10.1002/cssc.201100648
Li, T., Yin, L., Xu, W., Zhang, Y., Xian, H., Ronsse, F., Li, Z., Cordon, M., & Wang, K. (2025). Synthesis of aviation biofuel precursors from biomass-derived ketones: Substrate adsorption configuration-catalytic activity. Bioresource Technology, 417, 131858. https://doi.org/10.1016/j.biortech.2024.131858
Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., & López Granados, M. (2016). Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & Environmental Science, 9(4), 1144–1189. https://doi.org/10.1039/C5EE02666K
Meemanah, T., Chotirattanachote, A., Ahmad, J., Rashid, U., & Ngamcharussrivichai, C. (2023). Bifunctional acid–base strontium–titanium mixed oxides supported on SBA-15 for selective synthesis of renewable branched bio-jet fuel precursor. Fuel, 351, 128895. https://doi.org/10.1016/j.fuel.2023.128895
Nakagawa, Y., Tamura, M., & Tomishige, K. (2019). Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass. Fuel Processing Technology, 193, 404–422. https://doi.org/10.1016/j.fuproc.2019.05.028
Nirmala, M. J., Dhas, S. P., Saikrishna, N., Raj, U. S., Sai, P. S., & Nagarajan, R. (2022). Green nanoemulsions: Components, formulation, techniques of characterization, and applications. In Bio-Based Nanoemulsions for Agri-Food Applications (pp. 47–69). Elsevier. https://doi.org/10.1016/B978-0-323-89846-1.00013-9
Nguyen, T. D., Kikhtyanin, O., Ramos, R., Kothari, M., Ulbrich, P., Munshi, T., & Kubi?ka, D. (2016). Nanosized TiO?—A promising catalyst for the aldol condensation of furfural with acetone in biomass upgrading. Catalysis Today, 277, 97–107. https://doi.org/10.1016/j.cattod.2015.11.027
Olcay, H., Subrahmanyam, A. V., Xing, R., Lajoie, J., Dumesic, J. A., & Huber, G. W. (2013). Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. Energy & Environmental Science, 6(1), 205–216. https://doi.org/10.1039/C2EE23316A
Olcay, H., Malina, R., Upadhye, A. A., Hileman, J. I., Huber, G. W., & Barrett, S. R. H. (2018). Techno-economic and environmental evaluation of producing chemicals and drop-in aviation biofuels via aqueous phase processing. Energy & Environmental Science, 11(8), 2085–2101. https://doi.org/10.1039/C7EE03557H
Parejas, A., Cosano, D., Hidalgo-Carrillo, J., Ruiz, J. R., Marinas, A., Jiménez-Sanchidrián, C., & Urbano, F. J. (2019). Aldol Condensation of Furfural with Acetone Over Mg/Al Mixed Oxides. Influence of Water and Synthesis Method. Catalysts, 9(2), 203. https://doi.org/10.3390/catal9020203
Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., & et al. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484–489. https://doi.org/10.1126/science.1114736
Raguindin, R. Q., Gebresillase, M. N., Kang, J., Suh, Y.-W., & Gil Seo, J. (2025). One-pot sequential aldol condensation and hydrodeoxygenation of furfural and acetone to 1-octanol over multifunctional acid-based catalytic system. Bioresource Technology, 416, 131764. https://doi.org/10.1016/j.biortech.2024.131764
Ramos, R., Hidalgo, J. M., Göpel, M., Tišler, Z., Bertella, F., Martínez, A., Kikhtyanin, O., & Kubi?ka, D. (2018). Catalytic conversion of furfural-acetone condensation products into bio-derived C8 linear alcohols over NiCu/Al-SBA-15. Catalysis Communications, 114, 42–45. https://doi.org/10.1016/j.catcom.2018.06.006
Román-Leshkov, Y., Barrett, C. J., Liu, Z. Y., & Dumesic, J. A. (2007). Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 447(7147), 982–985. https://doi.org/10.1038/nature05923
Sádaba, I., Ojeda, M., Mariscal, R., Fierro, J. L. G., & Granados, M. L. (2011). Catalytic and structural properties of co-precipitated Mg–Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone. Applied Catalysis B: Environmental, 101(3–4), 638–648. https://doi.org/10.1016/j.apcatb.2010.11.005
Serrano-Ruiz, J. C., & Dumesic, J. A. (2011). Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy & Environmental Science, 4(1), 83–99. https://doi.org/10.1039/C0EE00436G
Shao, S., Ye, Z., Hu, X., Sun, J., Li, X., & Zhang, H. (2023). Synthesis of jet fuel from biomass-derived carbonyls via aldol condensation and hydrogenation in the one-pot: Effect of solvent and catalyst. Fuel, 333, 126238. https://doi.org/10.1016/j.fuel.2022.126238
Shylesh, S., Gokhale, A. A., Ho, C. R., & Bell, A. T. (2017). Novel strategies for the production of fuels, lubricants, and chemicals from biomass. Accounts of Chemical Research, 50(10), 2589–2597. https://doi.org/10.1021/acs.accounts.7b00354
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
Wu, K., Wu, Y., Chen, Y., Chen, H., Wang, J., & Yang, M. (2016). Heterogeneous catalytic conversion of biobased chemicals into liquid fuels in the aqueous phase. ChemSusChem, 9(12), 1355–1385. https://doi.org/10.1002/cssc.201600013
Xing, R., Subrahmanyam, A. V., Olcay, H., Qi, W., van Walsum, G. P., Pendse, H., & Huber, G. W. (2010). Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chemistry, 12(11), 1933. https://doi.org/10.1039/c0gc00263a
Zhang, J., Wang, X., Yang, B., Zeng, X., Zhang, Q., Zou, J.-J., & Xie, J. (2024). Superhydrophobic and superacid magnetic catalyst induced highly selective aldol condensation and alkylation for high-density biofuels. Fuel, 378, 132930. https://doi.org/10.1016/j.fuel.2024.132930
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Journal of Engineering and Exact Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.