Uso da condensação aldólica entre furfural e acetona para produção de biocombustível: Uma revisão

Autores

DOI:

https://doi.org/10.18540/jcecvl10iss9pp20059

Palavras-chave:

Biocombustíveis de aviação. Catálise heterogênea. Condensação aldólica

Resumo

A contínua dependência de combustíveis fósseis e os desafios ambientais associados têm impulsionado o desenvolvimento de fontes de energia renováveis, com as biorrefinarias emergindo como uma solução proeminente para converter biomassa em combustíveis valiosos e produtos químicos de plataforma. Entre estas, a produção de furfural, derivada de açúcares C5 em materiais lignocelulósicos, possui particular importância. Combustíveis e intermediários de hidrocarbonetos de cadeia estendida, como 4-(2-furil)-3-buten-2-ona (FAc, C8) e 1,4-pentadieno-3-ona-1,5-di-2-furanil (F2Ac, C13), são sintetizados via condensação aldólica entre furfural e acetona, seguida por processos de hidrogenação e hidrodesoxigenação. Este estudo enfatiza o papel crítico dos catalisadores, particularmente os heterogêneos, no aumento da eficiência e seletividade dessas reações. Catalisadores sólidos, em comparação com seus equivalentes homogêneos, oferecem vantagens substanciais, incluindo facilidade de recuperação, reutilização e maior sustentabilidade. Avanços em técnicas analíticas, como cromatografia gasosa-espectrometria de massa (GC-MS) e outros métodos de última geração, têm sido fundamentais para refinar a caracterização de catalisadores heterogêneos, garantindo melhor qualidade do produto e otimização do processo. Além disso, o estudo explora metodologias de ponta para caracterização de catalisadores, utilizando ferramentas como microscopia eletrônica de varredura por emissão de campo (FESEM), espectroscopia de fotoelétrons de raios X (XPS), espectroscopia no infravermelho com transformada de Fourier (FTIR) e espectroscopia de emissão óptica com plasma acoplado indutivamente (ICP-OES) para obter insights quantitativos e qualitativos precisos. Esta revisão fornece uma análise detalhada da integração dessas tecnologias na produção de biocombustíveis, destacando o papel crítico de catalisadores inovadores — particularmente sistemas bifuncionais sob condições controladas — e o desenvolvimento de rotas de conversão otimizadas. Essas estratégias são essenciais para avançar a eficiência industrial, melhorar a seletividade do processo e contribuir para a sustentabilidade do setor de energia.

Downloads

Não há dados estatísticos.

Referências

Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009–1017. https://doi.org/10.1016/j.envint.2004.04.004

Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493. https://doi.org/10.1039/c004654j

Arhzaf, S., Bennani, M. N., Abouarnadasse, S., Houssaini, J., Ziyat, H., & Qabaqous, O. (2021). Solvent-free aldol condensation of furfural and acetone on calcined Mg-Al hydrotalcites. Moroccan Journal of Chemistry, 9(3), 614-627. https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i3.23587

Arhzaf, S., Houssaini, J., Naciri Bennani, M., Alaqarbeh, M., & Bouachrine, M. (2024). Effect of interlayer anions on the catalytic activity of Mg-Al layered double hydroxides for furfural and acetone aldol condensation reaction. Arabian Journal of Chemistry, 17(1), 105412. https://doi.org/10.1016/j.arabjc.2023.105412

Arumugam, M., Kikhtyanin, O., Osatiashtiani, A., Kyselová, V., Fila, V., Paterova, I., Wong, K.-L., & Kubi?ka, D. (2023). Potassium-modified bifunctional MgAl-SBA-15 for aldol condensation of furfural and acetone. Sustainable Energy & Fuels, 7(13), 3047–3059. https://doi.org/10.1039/D3SE00444A

Barrett, C. J., Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2006). Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Applied Catalysis B: Environmental, 66(1–2), 111–118. https://doi.org/10.1016/j.apcatb.2006.03.001

Bergslien, E. T. (2022). X-ray diffraction (XRD) evaluation of questioned cremains. Forensic Science International, 332, 111171. https://doi.org/10.1016/j.forsciint.2022.111171

Butcher, D. J. (2005). Atomic absorption spectrometry: Interferences and Background Correction. In Encyclopedia of Analytical Science (pp. 157–163). Elsevier. https://doi.org/10.1016/B0-12-369397-7/00025-X

Bhagat, S. K., Nagpure, A. S., Lanjewar, M. R., Gode, N. G., & Thakare, S. R. (2024). Investigation of structural and morphological insights of nanostructured layered double hydroxides: catalytic activity in aldol condensation. Journal of Porous Materials, 31(2), 759–778. https://doi.org/10.1007/s10934-023-01545-w

Chheda, J. N., & Dumesic, J. A. (2007b). An overview of dehydration aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catalysis Today, 123(1–4), 59–70. https://doi.org/10.1016/j.cattod.2006.12.006

Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007b). Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition, 46(38), 7164–7183. https://doi.org/10.1002/anie.200604274

Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303. https://doi.org/10.1038/nature11475

De, S., Saha, B., & Luque, R. (2015). Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresource Technology, 178, 108–118. https://doi.org/10.1016/j.biortech.2014.09.065

de Paz Carmona, H., Kocík, J., Hidalgo Herrador, J. M., & Vráblík, A. (2024). Effectiveness of Mo, NiMo, and CoMo catalysts for co-hydroprocessing furfural-acetone aldol condensation adducts with atmospheric gas oil to produce biofuels. Fuel, 355, 129489. https://doi.org/10.1016/j.fuel.2023.129489

Desai, D. S., & Yadav, G. D. (2019). Green synthesis of furfural acetone by solvent-free aldol condensation of furfural with acetone over La?O?–MgO mixed oxide catalyst. Industrial & Engineering Chemistry Research, 58(35), 16096–16105. https://doi.org/10.1021/acs.iecr.9b01138

Douvris, C., Vaughan, T., Bussan, D., Bartzas, G., & Thomas, R. (2023). How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Science of The Total Environment, 905, 167242. https://doi.org/10.1016/j.scitotenv.2023.167242

Faba, L., Díaz, E., & Ordóñez, S. (2012). Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Applied Catalysis B: Environmental, 113–114, 201–211. https://doi.org/10.1016/j.apcatb.2011.11.039

Fang, X., Wang, Z., Song, W., & Li, S. (2020). Aldol condensation of furfural with acetone over Ca/ZSM-5 catalyst with lower dosages of water and acetone. Journal of the Taiwan Institute of Chemical Engineers, 108, 16–22. https://doi.org/10.1016/j.jtice.2020.01.004

Fang, Z., Zhang, X., Zhuang, X., & Ma, L. (2024). Recent advances in synthesis strategies for biomass-derived high-energy-density jet fuels. Renewable and Sustainable Energy Reviews, 202, 114715. https://doi.org/10.1016/j.rser.2024.114715

Faria, V. W., Almeida, G. C., & Mota, C. J. A. (2018). Aldol condensation of furfural with acetone catalyzed by nitrogenated organic bases: A preliminary study of the catalytic performance toward the production of biojet fuel. Química Nova, 41(6), 601–606. https://doi.org/10.21577/0100-4042.20170225

Ferreira, S. L. C., Bezerra, M. A., Santos, A. S., dos Santos, W. N. L., Novaes, C. G., de Oliveira, O. M. C., Oliveira, M. L., & Garcia, R. L. (2018). Atomic absorption spectrometry – A multi element technique. TrAC Trends in Analytical Chemistry, 100, 1–6. https://doi.org/10.1016/j.trac.2017.12.012

Ghobeira, R., Esbah Tabaei, P. S., Morent, R., & Geyter, N. De. (2022). Chemical characterization of plasma-activated polymeric surfaces via XPS analyses: A review. Surfaces and Interfaces, 31, 102087. https://doi.org/10.1016/j.surfin.2022.102087

Gürbüz, E. I., Gallo, J. M. R., Alonso, D. M., Wettstein, S. G., Lim, W. Y., & Dumesic, J. A. (2013). Conversion of hemicellulose into furfural using solid acid catalysts in ?-valerolactone. Angewandte Chemie International Edition, 52(4), 1270–1274. https://doi.org/10.1002/anie.201207334

Hakeem, I. G., Sharma, A., Sharma, T., Sharma, A., Joshi, J. B., Shah, K., Ball, A. S., & Surapaneni, A. (2023). Techno?economic analysis of biochemical conversion of biomass to biofuels and platform chemicals. Biofuels, Bioproducts and Biorefining, 17(3), 718–750. https://doi.org/10.1002/bbb.2463

He, J., Qiang, Q., Liu, S., Song, K., Zhou, X., Guo, J., Zhang, B., & Li, C. (2021). Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy. Fuel, 306, 121765. https://doi.org/10.1016/j.fuel.2021.121765

Hora, L., Kelbichová, V., Kikhtyanin, O., Bortnovskiy, O., & Kubi?ka, D. (2014). Aldol condensation of furfural and acetone over MgAl layered double hydroxides and mixed oxides. Catalysis Today, 223, 138–147. https://doi.org/10.1016/j.cattod.2013.09.022

Huber, G. W., Chheda, J. N., Barrett, C. J., & Dumesic, J. A. (2005). Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 308(5727), 1446–1450. https://doi.org/10.1126/science.1111166

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry catalysts and engineering. Chemical Reviews, 106(9), 4044–4098. https://doi.org/10.1021/cr068360d

Jafari, S. M., Faridi Esfanjani, A., Katouzian, I., & Assadpour, E. (2017). Release, Characterization, and Safety of Nanoencapsulated Food Ingredients. In Nanoencapsulation of Food Bioactive Ingredients (pp. 401–453). Elsevier. https://doi.org/10.1016/B978-0-12-809740-3.00010-6

Jing, Y., Xin, Y., Guo, Y., Liu, X., & Wang, Y. (2019). Highly efficient Nb?O? catalyst for aldol condensation of biomass-derived carbonyl molecules to fuel precursors. Chinese Journal of Catalysis, 40(8), 1168–1177. https://doi.org/10.1016/S1872-2067(19)63371-1

Kikhtyanin, O., Ganjkhanlou, Y., Kubi?ka, D., Bulánek, R., & ?ejka, J. (2018). Characterization of potassium-modified FAU zeolites and their performance in aldol condensation of furfural and acetone. Applied Catalysis A: General, 549, 8–18. https://doi.org/10.1016/j.apcata.2017.09.017

Kikhtyanin, O., Kelbichová, V., Vitvarová, D., Kub?, M., & Kubi?ka, D. (2014). Aldol condensation of furfural and acetone on zeolites. Catalysis Today, 227, 154–162. https://doi.org/10.1016/j.cattod.2013.10.059

Kong, X., Wei, X., Li, L., Fang, Z., & Lei, H. (2021). Production of liquid fuel intermediates from furfural via aldol condensation over La?O?CO?-ZnO-Al?O? catalyst. Catalysis Communications, 149, 106207. https://doi.org/10.1016/j.catcom.2020.106207

Korolova, V., Kikhtyanin, O., Grechman, E., Russo, V., Wärnå, J., Murzin, D. Yu., & Kubi?ka, D. (2023). Kinetics of furfural aldol condensation with acetone. Catalysis Today, 423, 114272. https://doi.org/10.1016/j.cattod.2023.114272

Korolova, V., Dubnová, L., Veselý, M., Lhotka, M., Kikhtyanin, O., & Kubi?ka, D. (2024). On the influence of synthetic parameters on the properties and aldol condensation performance of the MgAl mixed oxides and rehydrated hydrotalcites. Applied Clay Science, 249, 107263. https://doi.org/10.1016/j.clay.2024.107263

Lange, J., van der Heide, E., van Buijtenen, J., & Price, R. (2012). Furfural—A promising platform for lignocellulosic biofuels. ChemSusChem, 5(1), 150–166. https://doi.org/10.1002/cssc.201100648

Li, T., Yin, L., Xu, W., Zhang, Y., Xian, H., Ronsse, F., Li, Z., Cordon, M., & Wang, K. (2025). Synthesis of aviation biofuel precursors from biomass-derived ketones: Substrate adsorption configuration-catalytic activity. Bioresource Technology, 417, 131858. https://doi.org/10.1016/j.biortech.2024.131858

Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., & López Granados, M. (2016). Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & Environmental Science, 9(4), 1144–1189. https://doi.org/10.1039/C5EE02666K

Meemanah, T., Chotirattanachote, A., Ahmad, J., Rashid, U., & Ngamcharussrivichai, C. (2023). Bifunctional acid–base strontium–titanium mixed oxides supported on SBA-15 for selective synthesis of renewable branched bio-jet fuel precursor. Fuel, 351, 128895. https://doi.org/10.1016/j.fuel.2023.128895

Nakagawa, Y., Tamura, M., & Tomishige, K. (2019). Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass. Fuel Processing Technology, 193, 404–422. https://doi.org/10.1016/j.fuproc.2019.05.028

Nirmala, M. J., Dhas, S. P., Saikrishna, N., Raj, U. S., Sai, P. S., & Nagarajan, R. (2022). Green nanoemulsions: Components, formulation, techniques of characterization, and applications. In Bio-Based Nanoemulsions for Agri-Food Applications (pp. 47–69). Elsevier. https://doi.org/10.1016/B978-0-323-89846-1.00013-9

Nguyen, T. D., Kikhtyanin, O., Ramos, R., Kothari, M., Ulbrich, P., Munshi, T., & Kubi?ka, D. (2016). Nanosized TiO?—A promising catalyst for the aldol condensation of furfural with acetone in biomass upgrading. Catalysis Today, 277, 97–107. https://doi.org/10.1016/j.cattod.2015.11.027

Olcay, H., Subrahmanyam, A. V., Xing, R., Lajoie, J., Dumesic, J. A., & Huber, G. W. (2013). Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. Energy & Environmental Science, 6(1), 205–216. https://doi.org/10.1039/C2EE23316A

Olcay, H., Malina, R., Upadhye, A. A., Hileman, J. I., Huber, G. W., & Barrett, S. R. H. (2018). Techno-economic and environmental evaluation of producing chemicals and drop-in aviation biofuels via aqueous phase processing. Energy & Environmental Science, 11(8), 2085–2101. https://doi.org/10.1039/C7EE03557H

Parejas, A., Cosano, D., Hidalgo-Carrillo, J., Ruiz, J. R., Marinas, A., Jiménez-Sanchidrián, C., & Urbano, F. J. (2019). Aldol Condensation of Furfural with Acetone Over Mg/Al Mixed Oxides. Influence of Water and Synthesis Method. Catalysts, 9(2), 203. https://doi.org/10.3390/catal9020203

Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., & et al. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484–489. https://doi.org/10.1126/science.1114736

Raguindin, R. Q., Gebresillase, M. N., Kang, J., Suh, Y.-W., & Gil Seo, J. (2025). One-pot sequential aldol condensation and hydrodeoxygenation of furfural and acetone to 1-octanol over multifunctional acid-based catalytic system. Bioresource Technology, 416, 131764. https://doi.org/10.1016/j.biortech.2024.131764

Ramos, R., Hidalgo, J. M., Göpel, M., Tišler, Z., Bertella, F., Martínez, A., Kikhtyanin, O., & Kubi?ka, D. (2018). Catalytic conversion of furfural-acetone condensation products into bio-derived C8 linear alcohols over NiCu/Al-SBA-15. Catalysis Communications, 114, 42–45. https://doi.org/10.1016/j.catcom.2018.06.006

Román-Leshkov, Y., Barrett, C. J., Liu, Z. Y., & Dumesic, J. A. (2007). Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 447(7147), 982–985. https://doi.org/10.1038/nature05923

Sádaba, I., Ojeda, M., Mariscal, R., Fierro, J. L. G., & Granados, M. L. (2011). Catalytic and structural properties of co-precipitated Mg–Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone. Applied Catalysis B: Environmental, 101(3–4), 638–648. https://doi.org/10.1016/j.apcatb.2010.11.005

Serrano-Ruiz, J. C., & Dumesic, J. A. (2011). Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy & Environmental Science, 4(1), 83–99. https://doi.org/10.1039/C0EE00436G

Shao, S., Ye, Z., Hu, X., Sun, J., Li, X., & Zhang, H. (2023). Synthesis of jet fuel from biomass-derived carbonyls via aldol condensation and hydrogenation in the one-pot: Effect of solvent and catalyst. Fuel, 333, 126238. https://doi.org/10.1016/j.fuel.2022.126238

Shylesh, S., Gokhale, A. A., Ho, C. R., & Bell, A. T. (2017). Novel strategies for the production of fuels, lubricants, and chemicals from biomass. Accounts of Chemical Research, 50(10), 2589–2597. https://doi.org/10.1021/acs.accounts.7b00354

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117

Wu, K., Wu, Y., Chen, Y., Chen, H., Wang, J., & Yang, M. (2016). Heterogeneous catalytic conversion of biobased chemicals into liquid fuels in the aqueous phase. ChemSusChem, 9(12), 1355–1385. https://doi.org/10.1002/cssc.201600013

Xing, R., Subrahmanyam, A. V., Olcay, H., Qi, W., van Walsum, G. P., Pendse, H., & Huber, G. W. (2010). Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chemistry, 12(11), 1933. https://doi.org/10.1039/c0gc00263a

Zhang, J., Wang, X., Yang, B., Zeng, X., Zhang, Q., Zou, J.-J., & Xie, J. (2024). Superhydrophobic and superacid magnetic catalyst induced highly selective aldol condensation and alkylation for high-density biofuels. Fuel, 378, 132930. https://doi.org/10.1016/j.fuel.2024.132930

Downloads

Publicado

2024-12-21

Como Citar

Borges, T. L. P., Santana, R. de C., Sato, A. G., & Rodrigues, F. de Ávila. (2024). Uso da condensação aldólica entre furfural e acetona para produção de biocombustível: Uma revisão. The Journal of Engineering and Exact Sciences, 10(9), 20059. https://doi.org/10.18540/jcecvl10iss9pp20059

Edição

Seção

General Articles